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Abstract—Heat transfer in turbulent flow between parallel plates is solved by matched asymptotic

expansion technique for the case of uniform wall temperature, and the Nusselt number and the thermal

entry lengths are determined over a wide range of Reynolds and Prandtl numbers. Simple analytical

expression is presented for the asymptotic Nusselt number. A comparison of the asymptotic Nusselt

number for parallel plates in the range 0.004 < Pr < 0.1 with that obtained from a circular tube solution

based on the equivalent diameter shows that circular tube results if applied for parallel plates overestimate
the Nusselt number from 13 to 35% depending upon the Prandtl and Reynolds numbers.

NOMENCLATURE Greek symbols
A,,  constant defined by equation (7); k L
Cn, constant in equation (3f); % = 2C,’ thermal diffusivity;
D., = 4h, equivalent diameter; B,  constant defined by equation (18);
fty, = —u—, dimensionless velocity defined by T'P), gamma func;txon of argument P,
Cliy, equation (3b); g, eddy v%scos_lt_y;
F,,  constant defined by equation (6); em,  eddy diffusivity;
G,  dimensionless constant defined by en), =1+ 8—7 Pr, dimensional total diffusivity;
equation (13d); v
H,, the nth eigenfunction; n, = y/h, dimensionless transverse coordinate;
h, one-half the distance between the plates; T-T, . )
I Bessel function of order p; 0, = T dimensionless temperature
K, = G- A, redefined eigenvalue, equation (13c); ! profile;
k, thermal conductivity; A, the nth eigenvalue;
m, exponent in the power law velocity; i, == | — X, dimensionless distance from the
Nu, Nu,, local and asymptotic Nusselt number wall, equation {18);
respectively; v, constant defined by equation {21b);
Pr, Prandtl number; v, kinematic viscosity;
R, redefined eigenfunction given by equation £, dimensionless axial variable defined by
(13a); equation (3d);
Re,  Reynolds number; o, density;
5 = KX, dimensionless stretched radial @1, ¢, constants defined by equation (22c).
coordinate;
T, temperature; Subscripts
To,  temperature at the inlet {(x = 0); b, bulk mean fluid property;
u, velocity; c, center region;
U, bulk mean velocity; 0, channel center;
v, = K -3, stretched distance from the wali; w, wall region;
w(X), function defined by equation (13e); 1, channel wall.
X, dimensional axial variable;
X,  redefined dimensionless radial coordinate INTRODUCTION
defined by equation (13b); THE PROBLEM considered here is that of an incom-
¥, dimensional transverse coordinate; pressible, constant property fluid in steady, fully
z, = 1 —n, dimensionless distance from the wall.  developed turbulent flow inside smooth, straight
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parallel plate channel. A survey of literature reveals
that very little work exists on heat transfer for this
type of systems and the existing studies are rather
limited in their scopes. In most of these studies the
limitations arise from the determination of the eigen-
values and eigenfunctions needed for the solution,
because only a few of the eigenvalues and eigen-
functions could be computed with the purely numerical
approaches. As a result the solutions are applicable
only in the regions away from the inlet and over a very
limited range of Prandtl numbers. The other limitation
arises from the. choice of the eddy diffusivity model.
For example, Hatton [1] studied heat transfer in the
thermal entrance region with turbulent flow between
parallel plates; his analysis is applicable only over a
very limited range of Prandtl and Reynolds numbers
(ie. Pr=1and 10, Re ~ 7 x 10% and 7 x 10%).

Some of these difficulties can be alleviated if a com-
bination of an analytical and a numerical approach is
used for the analysis. In this approach, the first few
eigenvalues and eigenfunctions are computed by purely
numerical means, and the remaining are determined
by the method of asymptotic technique. Sellars, Tribus
and Klein [2] and Dzung [3] studied the case of
laminar flow inside circular tubes. Sternling and
Sleicher [4] used only a first order analysis to study
turbulent flow inside tubes for a uniform wall tempera-
ture boundary condition; they have the shortcoming
that their asymptotically determined eigenfunctions did
not match the computer solutions of Sleicher and
Tribus [5]. Recently Sleicher et al. [6] and Notter and
Sleicher [7] used matched asymptotic expansions to
solve the turbulent Graetz problem. One purpose of
this paper is to present solutions for heat transfer in
turbulent flow between parallel plates for use in
engineering applications.

ANALYSIS

Consider heat transfer to an incompressible fluid
flowing in steady, fully developed, turbulent flow
between two smooth, straight parallel plates with their
walls kept at a uniform temperature 7; and the fluid
enters the channel at a uniform and constant tem-
perature Ty.

The energy equation for a steady state, fully
developed turbufent flow inside a parallel plate channel
is taken in the form

¢cT ¢ eT
ugx =§;|:(a+sn)5y—} in0<y<hx>0 (la)
subject to the boundary conditions
oT
— =0, (1b)
&y ly=0
T(h,x)= T, (10)
T(y,0)=To (1d)

Here, x and y are the axial and transverse co-
ordinates, u and T are the axial velocity and tempera-
ture, and a and ¢y are the thermal and eddy diffusivities,

respectively. The assumption of negligible axial conduc-
tion is reasonable when Peclet number exceeds 100.

These equations are now expressed in the dimension-
less form as

o0
Sfn )ag an[(ﬂ)—} in0<y<1,¢>0, (2a)
with the boundary conditions
00
—| =0, (2b)
M=o
0(1,¢) =0, (20
0(n,0) =1, (2d)
where various dimensionless variables are defined as
y
== 3
n=i (3a)
— u _ 1/m
fy=—=(1-n) (3b)
Clim
T-T,
b= 3
— (39
16x
= 3d
¢ ¢D.PrRe (3d)
oa+e
eln) = ——, (3¢)
o
with
= Cnlh—y)'m (3)
1
=" po=an G
m

where u,, is the bulk mean velocity and C,, is a constant.
The values of the exponent m and the expression used
to define the eddy diffusivity e(n) are given in the
Appendix. A power law velocity distribution is chosen
for this study; it will be shown later in this paper that
the heat-transfer results obtained from the solution of
the energy equation by using a power law velocity
profile are in close agreement with those obtained by
using the usual logarithmic velocity profile.

Appropriate eigenvalue problem for the solution of
equations (2) is given as

[ ) "(’”]+ BI0Hm=0, (4
subject to the boundary conditions
H'(0) = (4b)
H(1)=0, (40)
with the normalizing condition taken as
H(0) =1, (4d)

where H, and 4, are the eigenfunctions and eigenvalues
respectively and the prime denotes differentiation with
respect to ».

Then the temperature distribution is taken in the
form

B(n, &) = Z F,H,(n)e™ " %)

n=0
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and the F, are evaluated by utilizing the boundary
condition at ¢ = 0, which results in the relation,

Y F.H,=1;
#=0

the orthogonality property of the eigenfunctions leads
to the determination of F, as

2
== e 6
Fn ; AH(1) ©
" B4,

and for convenience in the subsequent analysis we

introduce a new constant A4, defined as
F,H,(1
A = 2n( ). @

The heat flux at the channel wall is given by

(0T _ Bk o
Q(f)*k<ay>y=h— De(TO Tl)nzoAne (®

and the Nusselt number is defined as
4{&)D,

Nu= , 9
KT —-T)
where T, is the bulk temperature determined from
h
j‘ Tudy
T, = 2 {10)

——.
J udy
4]
The substitution of velocity and temperature profiles

from equations (3b) and (5) into equation (10) yields
AL~T) & As

1+m
then the Nusselt number becomes
4 i Ape=E
Nu(f) = 1+:° CR— (12)
()L e

Determination of the eigenvalues and the eigenfunctions

Although the first few eigenvalues and eigenfunctions
(rn = 0to 3)can be obtained by purely numerical means,
the numerical solutions become less accurate as the
value of » increases. On the other hand solutions by
analytical means are possible only for the large eigen-
values. Therefore numerical solutions coupled with
analytical ones are sought for this problem. In this
analytical approach the flow field is divided into two
separate regions, the eigenvalue problem is simplified
for each of these regions consistent with the physical
situations prevailing in them, the resulting equations
are then solved analytically and solutions are matched
to determine the constants. We present here briefly the
numerical and analytical solution of the eigenvalue
problem,
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Computer calculations of AZ and A,

The eigenvalue problem given by equations (4) with
the velocity and eddy diffusivity profiles as specified
previously is solved numerically by performing the
calculations in double precision arithmetic and the
resulting values of A2 and A, are presented in Table 1.

Asymptrotic formulas for the higher eigenvalues and
eigenfunctions

We seek solution to equations (4) valid for large
values of A2, It is advantageous to change variables in
equation (4a) so that it takes a form suitable for
finding solutions; new variables are defined as

R = [e(n)- f1*H(n), (13a)
x=_ J VLS /etm)] dn, (13b)
G Jo
K =Gi, {13¢)
1
G= L JUflem)]dn, (13d)
(X)= [0 17 s T, (139
w(X) = [e(n o3 Ll .
Equation {4a) then takes the form
2

%+ [K2—~w(X)]R = 0. (14)

Equation (14} will now be solved by the matched
asymptotic expansion technique by separating the flow
field into two regions, namely, the center and the wall
regions. For the center region it is sufficiently accurate
to take the velocity and diffusivity as constant; then
it follows from the definition of w(X) that in the
center region

wX)= w(X)=0.
Then equation (14) for the center region becomes
d?R,
ds?

For the wall region the eddy diffusivity and eddy
viscosity are negligible; the equation becomes

(15)

+ K2R, =0, where 5 =KX. {16)

d?R,, B
7 Wy =Y, 17
0 +(1 i R,=0 (an
where
1+4m
=Ky=K~s, f; = s =1{-X. (18
v 1 s, B A2 and p=1-X. (18}

Solution for the center region
The solution of equation (16) which satisfies the
boundary condition R}(0) = 0 is taken as

R(s) = D cos(s) (19)

where the unknown coefficient is evaluated from equa-
tion (13a} in the neighborhood of the center (n -0
or s — 0); then

R(s) = (2/m)"/2 B cos(s), (20a)

where

B = (7/2)!2{g)V/*. (20b)
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Table 1. Eigenvalues and constants

Prandt!

Reynolds

number  number A5 A A3 3 Ao Ay 42 As
0.0 10* 2.6393 25421 71.500 140.95 0.95037 0.86528 0.83120 0.81033
0.002 10* 2.6410 25.440 71.550 141.06 095106 0.86569 0.83146 (.81082
5% 10° 2.7681 26.223 73.734 145.29 1.04697 096130 0.92538 0.90581
108 3.0887 29.593 83.725 165.29 1.18726 1.04745  0.99045 0.96306
0.004 10* 2.6486 25.520 71.789 141.54 0.95408 0.86754 0.83264 0.81134
10° 27185 25.882 72.754 143.38 1.01002 092679 0.89173 0.87131
5x10° 34218 33.180 94.346 186.63 1.31953 1.12534 1.04438 1.00544
108 4.6243 46.794 135.490 - 269.68 1.84210 1.38937 1.22597 1.16212
0.01 104 2.718 26.26 74.00 145.98 0.9820 0.8845 0.8434 0.8187
5x 104 3.036 29.29 82.82 163.55 1.1310 1.0000 0.9424 0.9100
10° 3479 33.89 96.40 190.81 1.3190 1.1229 1.0357 0.9901
5% 10° 7.264 77.84 230.35 462.72 2.9590 1.9210 1.5761 1.4600
108 12.133 145.06 443.08 897.99 5.1260 2.6300 2.0390 1.9370
0.02 104 2.9786 29.041 82.241 162.88 1.08542  0.94565 0.88087 0.84423
5x 104 4.2246 42.025 120.579 239.65 1.61296 1.29150 1.14741 1.07434
10° 5.6709 58.075 168.923 337.56 2.22433 1.62706  1.38080 1.27087
5x10° 15.6970 188.339 577.680 1174.71 6.62082  3.32049 248026 2.28883
10° 26.9970 369.633 1166.037 2385.52 11.70377 4.61964 403403 3.23782
0.04 10* 3.737 3741 107.46 214.10 1.3912 1.1075 0.9706 0.9044
Sx10* 7.143 75.17 221.10 444.19 2.8198 19133 1.5478 1.3900
10° 10.667 117.46 351.54 710.75 4.3245 2.6054 2.0068 1.7897
5x10° 32.389 428.98 1354.39 2774.31 13.9373 57109 4.0909 37368
106 53.834 838.24 2692.82 5543.48 23.6853 8.2768 5.6676 5.4420
0.1 10* 5971 64.64 192.70 390.21 2.3130 1.4650 1.1350 1.0398
Sx10* 14.897 173.64 530.16 1081.08 6.1000 3.1930 2.2740 1.9563
10° 23.667 290.26 899.35 1837.49 9.8878 4.6373 3.2070 2.7269
5% 10° 69.681 1105.59 3556.27 7332.81 30.5760 11,2600 7.3928 6.5740
10¢ 103.026 212043 6915.16 14278.11 46.0490 17.0099  10.9390 9.9557
0,72 10* 18.009 294 .86 97291 2002.79 7.4501 2.2046 1.5698 1.8672
5x10* 58.716 999.34 3323.12 6949.39 25212 6.3549 3.6577 3.01362
10° 94.189 17534 5846.74 12223.14 40.991 7.3687 5.7207 46314
5 x10° 330.74 6962.7 2345599 48 980.29 147.51 31.5617 17.6214 14.6552
10° 593.06 13160.6 44 563.38 93003.91 266.46 51.8128 29.0679 245110
1.0 10* 21.114 442.63 1500.58 3064.42 8.8326 1.9106 1.5001 1.2389
5x 104 72.39 1530.19 5228.63 11018.46 31.349 5.5137 3.0349 2,653
10° 123.06 2729.94 9362.99 19699.12 53.877 8.8664 44104 4.0002
5x10° 450.62 10967.69 37847.07 79501.85 201.694 2925 157321  12.659
106 770.00 20531.6 70793.21 148 713.49 347367 52.751 26.774 20.581
10.0 10* 55.88 23.7679
Sx10* 203.56 89.193
10° 364.29 161.095
5x10° 1464.05 660.398
10° 2707.64 1228.925
10? 104 12549 53.552
5 x10¢ 490.50 215.241
10° 892.22 395.013
Sx10° 3707.94 1674.005
10 6938.99 315193
103 10* 274.05 117.068
5x10* 1082.84 482.09
10° 2004.9 887.81
10 15782.5 7169.4
104 10* 575.9 246.101
5x10* 2316.66 1016.98
5% 10° 17813.29 8042.80
Solution for the wall region tions (20a) and (21a) for sufficiently large values of K
The solution of equation (17) is taken as so that the regions of validity of R, and R,, overlap,
Ru) = ¢"2[DiJ,0)+ DoJ_,@)],  (21a) Wefind
where & = — M (22a)
B sin(mv)
m
VS om @10 and
and D, and D, are arbitrary constants which are deter- D, _ sin(K—¢2) (22b)

mined by matching the two solutions given by equa-

B sin(mv)
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where

1

T T
(pl=§(%+v) and (P2=§(I—V)~ (22¢)

Asymptotic eigenvalues
The asymptotic eigenvalues are determined by the
requirement that H(n = 1) = 0. This condition along

with equation (13a) gives
R, (v=0)=0. (23)

Equation (23) when applied to equation (21a) requires
that D, = 0. Hence, equations (22a) and (13¢) yield
_hnt+o
TG

and then this result when combined with equation (22b)
gives

An (24a)

Do

B (24b)

Asymptotic A,

To evaluate the asymptotic A,, the expressions
(CH/0n)p=, and (OH/0A),=,, are required. First we
determine H,, (H in the wall region) from R,,. Equation
(21a) after utilizing equation (20b) is written as

D D
R, (v) = (mv/2)!2eli* [—Bl J,@) +f1_v(u)]. (25a)
where
v=2AzY?, z=1-9. (25b)

Now, H,(z) is determined from equations (13a) and
(25) as

D
H.,.(2) = (mvd)'2e* I:?l zV2 ], 2vizl?)

+ %zl/zJ_v(Zviz‘/zv)]. (26)

OH
04 A=A,
n=1

is evaluated from equation (26) and the result is

The derivative

oH (- D al2ell* Gvay Dy 272)
0k Jiman sin(@v)T(1—v) (
n=1
and (6H/0n) =1 is found as
aH (_ 1)"71?”28(1)/4(\%)(1/2”"
(%)Fl ST T 7o)

Finally, the expression for 4, is obtained from equa-
tions (6), (7) and (27) as
_sin(@y) () > T(1—v)
" GAL,T(1+v)
Equations (24a) and (28) give the asymptotic ex-

pressions for 4, and A4, respectively. These relations are
derived on the assumption that A, is large and hence

(28)
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Table 2. The constant G
Re
104 5% 10* 103 5x10° 108
Pr

0.0 0.91907
0.002 091871 091699 091145 0.90617 0.84884
0.004 091711 091484 091179 0.79767 0.66228
0.01 090268 0.85217 0.78792 0.50361 0.36128
0.02 0.85412 0.70102 0.58923 0.31423 0.21998
004 0.74282 051176 040344 020270 0.14287
0.1 0.54979 0.32526 0.24810 0.12305 0.08800
0.72 024564 0.12628 0.09381 0.04661 0.03403
1.0 020110 0.10061 0.07369 0.03644 0.02685
10 0.07277 0.03272 0.02375 0.01199 0.00902
100 0.02525 0.01063 0.00782 0.00425 0.00337
1000 0.00832 0.00362 0.00278 0.00181 0.00159
10000 0.00278 0.00140 0.00119 0.00103 0.00102

they represent the larger eigenvalues and eigen-
functions.

The parameter G in equations (24a) and (28) is
constant for a given Reynolds and Prandtl number.
This constant is defined by equation (13d) and its values
determined by numerical integration are given in
Table 2.

RESULTS AND DISCUSSION

The Nusselt number and entry length calculations
can be performed provided that the necessary eigen-
values, A2, and the constants, A4,, are available. As
discussed previously the aim of the analysis is to obtain
lower eigenvalues and the corresponding constants
from the computer calculations and the higher ones
from the asymptotic formulas; in this manner a con-
tinuous range of eigenvalues and constants are de-
veloped. This procedure, however, is applicable only
if the assumptions made in the derivation of the
asymptotic formulas have been realized and there exists
a domain where the center and wall regions overlap.
The asymptotic formulas are found to be in good
agreement with the computer calculations whenever
such overlapping exists.

The study also has shown that the extent of agree-
ment depends strongly on Prandtl number, but weakly
on Reynolds number. That is, the agreement between
the computer and the asymptotic solutions has been
found to be excellent for the range of Prandtl number
below about 0.1, and rather poor for the higher values
of Prandtl number. Therefore, in the determination of
the local Nusselt number and thermal entry lengths for
Prandt] numbers below 0.1, the asymptotic formulas
given by equations (24a) and (28) are used to calculate
numerical values of A7 and A, for values of n greater
than those for which computer solutions are available;
for higher Prandtl numbers only the computer solu-
tions are used.

The asymptotic Nusselt number is obtainable from
equation (12) by taking only the first term in the series,
that is

4m
14+m

Nug, = 3. (29)



570 ALI A. SHiANI and M. N. Ozisik

Pr=10000
1000
100
— 10
|
072
103
N 0.10
0.04
102 |- 0.02
- 0.0l
10’ 0
PO | 1 ]
104 |o5R 10®
(]

FiG. 1. Effects of Reynolds number on the asymptotic
Nusselt number.

Clearly, the asymptotic Nusselt number is directly
related to the exponent m and the first eigenvalue, A3,
given respectively in the appendix and Table ! as a
function of Reynolds number and both Reynolds and
Prandtl numbers. Values of the asymptotic Nusselt
number are shown as a function of Reynolds number
for a given Prandtl number in Fig. 1. Figure 2 shows
the asymptotic Nusselt number as a function of Peclet
number. The asymptotic Nusselt number is correlated
to within 6% by the relations

Nu = 12+0.03Re®' Pre? (30a)

100~

with
0.24
a, = 0.88 — m (30b)
and
a, = 033+0.5¢ %o, (30¢)

Equations (30) hold for 0.1 < Pr < 10* and 10* <
Re < 10°.

For the low range of Prandtl number the calculations
are correlated to within 6% by the relation

Nu,, = 8.34+0.02Re%82Prb (31a)
with
0.0096
b=0. e
052+0.02+Pr (31b)

Equations (31) hold for 0004 < Pr<1 and 10* <
Re < 10°,

In many applications of turbulent flow, the Nusselt
number for flow between parallel plates is obtained
from those for a circular tube by merely replacing the
tube diameter by the effective diameter, D,, for the
flow. For the case of moderate and large Prandtl
number, 0.1 < Pr < 10* and 10* < Re < 10%, a com-
parison of the asymptotic Nusselt numbers obtained
from the present solution for parallel plates with those
obtained for circular tubes by Notter and Sleicher [7]
based on the effective diameter agreed to within 5%;.
In the case of low Prandtl number especially in the
liquid metals range, however, the use of the circular
tube results based on the effective diameter leads to a
considerable error in the prediction of the asymptotic
Nusselt number. A comparison of the asymptotic
Nusselt numbers obtained here for parallel plates in
the range 0.004 < Pr < 0.1 and 10* < Re < 10° with
those obtained for circular tube by Notter and Sleicher
[7] based on the effective diameter shows that the
circular tube results modified for parallel plates over-
estimates the asymptotic Nusselt number by 13-35%,
the range of error being dependent upon the Prandtl
and Reynolds numbers. The error increases with lower
Prandtl numbers, and for a given Prandtl number it
increases with higher Reynolds numbers. Therefore

Pr=0.1
0.04

0.02
0.0i

FiG. 2. Asymptotic Nusselt number for liquid metal region.
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2.2 _I.‘ Pr=0.01 .
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F1c. 3. Effects of Reynolds number on the Nusselt number.

equations (31} are recommended for the calculation of
asymptotic Nusselt number for heat transfer to liquid
metals in parallel plates.

Table 3. Effects of the choice of velocity distribution on the
Nusselt number

.. . P 4 2
The local Nusselt number, Nu(&), is given by equation P A3 L Aih . = Tfi FH i\’ U, = ;iq
N . . N ower Logarithmic m ogarithmic
(12) and is plotted as a func’u.on of X /D‘e in I?‘lg. 3. Pr  Re  Law  profile  PowerLaw profile
The thermal entry length is defined in this study to -
. 4
be that distance downstream of the thermal entrance 000 10/ §Z,§§ 28 18'226 ool
necessary for the local Nusselt number, Nu(¢), to fall 10° 3479 3033 1232 12132
to within 1% of its fully developed value, Nu,,. Cal- 5 x igi 1;32‘; 1?.{5)249 igég 26-}298
. . \ . . . ; X 44,
culations of this quantity, ~that is x/D, at which 100 S971 50t 2043 7004
Nu(€)/Nu,, = 1.01, were carried out for 0.002 < Pr< Sx10* 14897 129812 52,32 51.925
1.0and 10* < Re < 10° The results are shown in Fig. 4. 10° 23667 2086 83.84 83.444
5x10° 69.681  63.3028 251.69 253.21
10% 103026 94419 37441 377.67
25r 1.0 10+ 21,114 180768 722 72.307
$x10* 7239 63836 2542 255.345
TP 105 12306  109.529 4359 438.118
2oL —— ool §x10° 45062  410.754 1627.6 1643.016
— 002 , 105 77000 706.225 2798.0 28249
—— 004 g’ —
sl —-— o . 7
——— O / /
x/D, / . SR,
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In order to determine the effects of the velocity
profile used in the energy equation on the heat-transfer
results, the energy equation (2a) is solved by the same
technique for the logarithmic velocity distribution used
to calculate the eddy diffusivity. Table 3 shows a com-
parison of the asymptotic Nusselt number for the power
law and logarithmic velocity profiles. The two results
are sufficiently close to each other.
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APPENDIX
The Eddy Diffusivity Profile and the Values of m

The eddy diffusivity profiles
The total diffusivity of heat &(y) is given in the dimen-
sionless form as
ey Pr ¢
eln) = 1+Pr—= 14— —.
¥ Pr, v

Assuming the shear stress varies linearly with the distance

from the wall we write
(éu)
b i
_ &1 Ja=o

cu
oz

(A1)

-1 {A2)

£
v

To determine &/, the velocity distribution is taken as

1
ut = tan”'(0.091Y*), 0 < Y* < 45

3
0.091 -
ut =514+25mY",
! {A3b)
45<¥* < [‘g("( f S)UZZ}
3 2=0.15
u 1
gt o= h(Z N
m L 8 v
l; (fu/8) (A3c)
Yt > [«—e(fm/g)”zz}
5 2=0.15

where

ut = flfu/8)2,
v _Re v,
YT = 3 (/812 2,

and the values of #n./um are tabulated in Table Al, the
friction factor f, and the velocity defect law h({z) are given as

hiz) = 5.75 log(1/z), (Ada)
o = 1/{210g[Re(f,)*/3] - 0.8}2. (Adb)

The substitution of the above velocity profiles into equation
(A2) gives the expressions for g/v'.

The turbulent Prandil number, Pr,, needed in equation
{Al}is taken for Pr < | as suggested by Notter and Sleicher
[7]. as

&

& ) 1.4
0.025Pr = + 90 P2 ()
v ¥

P AN
" 1490y (i>
y

In the case of Prandt] numbers greater than 1, the total
eddy diffusivity &() in the wall region, 0 < Y™ <43, is
obtained from equation (A1} by using the relation for oy/v
given by Notter and Sleicher [7] as

+3
w0009V oy cus)
v (1400067722
For the regions Y* > 45, equations (A2) and (A3) are used
in such a manner that at Y* = 45, g4/v' from equation (A6)
is matched with (Pr, ¢/v') from equations (A2) and (A3) to
obtain the corresponding turbulent Prandt! number. A
similar approach is followed at

Yt = F;f (,;;/8;1»’221 :
“~ =0.15

In the case of the power law velocity profile the values
of the exponent m are computed from the relation

m = 2/[(1 + Bttt} 2 — 3] (A7)

and the results are given in Table Al as a function of the
Reynolds number.

10
1+ - (AS)

£
354+ —
v

(A6)

Table Al. Values of " and m
Umax
Reynolds U .
number . !
10* 0.788 5.890
5x 10* 0.821 7.198
103 0.832 7.748
5x10° 0.857 9.310
108 0.865 9.930

METHODE D’EVALUATION DU TRANSFERT DE CHALEUR EN ECOULEMENT
TURBULENT ENTRE PLAQUES PARALLELES

Résume— Le transfert de chaleur en écoulement turbulent entre plaques paralléles est résolu a I'aide d’une
technique de développement asymptotique avec raccordement dans le cas d’une température constante
i la paroi; les nombres de Nusselt et les longueurs d’établissement thermique sont déterminés sur une
plage étendue de nombres de Reynolds et de Prandtl. Une formule analytique simple est donnée pour
le nombre de Nusselt asymptotique. Une comparaison du nombre de Nusselt asymptotique pour
Pécoulement entre plaques paralléles dans le domaine 0,004 < Pr < 0,1 avec celui en tube circulaire
obtenu par une solution basée sur le diamétre équivalent montre que si les résultats en tube circulaire
sont appliqués au cas des plaques paralléles on surestime le nombre de Nusselt de 13 4 35 pour cent
suivant les valeurs des nombres de Prandt! et de Reynolds.

EINE LOSUNG FUR DEN WARMEUBERGANG BEI TURBULENTER
STROMUNG ZWISCHEN PARALLELEN PLATTEN

Zusammenfassung— Der Wirmeiibergang bei turbulenter Stromung zwischen parallelen Platten wird fiir
den Fall einheitlicher Wandtemperatur mit Hilfe einer angepaBten asymptotischen Entwicklung geldst;
die Nusselt-Zahl und die thermische Einlaufstrecke werden fiir einen groBen Bereich von Reynolds—
und Prandtl-Zahlen bestimmt. Ein einfacher analytischer Ausdruck fiir die asymptotische Nusselt-Zahl
wird angegeben. Ein Vergleich der asymptotischen Nusselt-Zahl fiir parallele Platten im Bereich von
0,004 < Pr < 0,1 mit derjenigen, die sich unter Verwendung des hydraulischen Durchmessers aus der
Lasung fiir das Rohr ergibt, zeigt, daB die auf parallele Platten angewandte Rohridsung Nusselt—Zahlen
ergibt, welche je nach Prandtl- und Reynolds—Zahlen um 13 bis 35% zu hoch liegen.



A solution to heat transfer in turbulent flow between parallel plates

PEIIEHHE 3AJ0AYX O TENJIOOBEMEHE
B TYPBYJIEHTHOM TMOTOKE MEXIY
NNAPAJUIEJIBHBIMU MJNIACTUHAMHA

Annoramus — 337a4a O TennooOMeHe B TypOYNEHTHOM TOTOKS MEXAY Napa/fieAbHbiMH IIIACTH-
HaMH DEIIAETCH METONOM aCHMITOTHYECKOTO DA3/IONEHHs Ul Ciiydas MOCTOAHHONR TeMNepaTypsbl
CTEHKM TIpH 3HadeHusx Yucna HyccensTa v AnuHBI TENI0BOTO HAYANBHOTO YYACTKa, ONpeNenseMbix
B WHPOKOM AuanasoHe uimeHeHult uncen Pelivoneaca u Ipauaras. Jins acCuMOTOTHYECKOrO YHCaa
HyccenbTa RPUBOAUTCS NPOCTOE aHATTMTHYECKOE BbipaeHne. CpaBHeHHE aCUMNITOTHYECKOro YKcia
HyccenpTta nast napansenbHblX MacTHH B auanasode 0,004 < Pr < 0,1 ¢ yucnom Hyccensra, nony-
YEHHBIM M3 PEILEHUs O/ KPYIJoH TpyOul ¢ BBENEHHEM 3KBHBAJIEHTHOIO OHAMETPa, NOKA3bIBAET,
4TO KCHOL3OBAHHE PE3Y/IbTATOB, MOJYUEHHBIX AT KPYrioil TpyObli NPUMEHHTENBHO X flapaniesib-
HbIM IJIACTHHAM JAET 3aBbllUCHHbIC 3HAYeHMA yucna Hyccenbra Ha 13-35%, B 3aBUCUMOCTH OT YHCET
Mpaunrns u Peitnonpaca.
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