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Abstract-Heat transfer in turbulent flow between parallel plates is solved by matched asymptotic 
expansion technique for the case of uniform wall temperature, and the Nusselt number and the thermal 
entry lengths are determined over a wide range of Reynolds and Prandtl numbers. Simple analytical 
expression is presented for the asymptotic Nusselt number. A comparison of the asymptotic Nusselt 
number for parallel plates in the range 0.004 < Pr < 0.1 with that obtained from a circular tube solution 
based on the equivalent diameter shows that circular tube results if applied for parallel plates overestimate 

the Nusselt number from 13 to 35% depending upon the Prandtl and Reynolds numbers. 

NOMENCLATURE 

4, constant defined by equation (7); 
C In, constant in equation (3f); 
D,, = 4h, equivalent diameter; 

f(q). = x, dimensionless velocity defined by 
m equation (3b); 

F 

GI’ 
constant defined by equation, (6); 
dimensionless constant defined by 
equation (13d); 

H”% the nth eigenfunction; 

h, one-half the distance between the plates; 
J 
i,’ 

Bessel function of order p; 
= G . I, redefined eigenvalue, equation (1%); 

k thermal conductivity; 
m, exponent in the power law velocity; 

Nu, &u> 10~1 and asymptotic Nusselt number 
respectively; 

Prandtl number; 
redefined eigenfunction given by equation 

(13a); 
Reynolds number; 
= KX, dimensionl~s stretched radial 
coordinate; 
temperature; 
temperature at the inlet (x = 0); 
velocity; 
bulk mean velocity; 
= K-s, stretched distance from the wall; 
function defined by equation (13e); 
dimensional axial variable; 
redefined dimensionl~s radial coordinate 
defined by equation (13b); 
dimensional transverse coordinate; 
= 1 -q, dimensionless distance from the wall. 

Greek symbols 

k 
= -, thermal diffusivity; 

PC, 
constant defined by equation (18); 
gamma function of argument P; 
eddy viscosity; 
eddy diffusivity; 

= 1 + f. Pr, dimensional total diffusivity; 

= y/h, dimensionless transverse coordinate; 

= s, dimensionless temperature 
0 

1 profile; 

the 8th eigenvalue; 
= 1 - X, dimensionless distance from the 
wall, equation (18); 
constant defined by equation (21b); 
kinematic viscosity; 
dimensionless axial variable defined by 
equation (3d); 
density; 

tpr, 92, constants defined by equation (2%). 

Subscripts 

b, bulk mean fluid property; 
c, center region; 
0, channel center; 
W, wall region; 
1, channel wall. 

I~ODU~IO~ 

THE PROBLEM considered here is that of an incom- 
pressible, constant property fluid in steady, fully 
developed turbulent flow inside smooth, straight 
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parallel plate channel. A survey of literature reveals 
that very little work exists on heat transfer for this 
type of systems and the existing studies are rather 
limited in their scopes. In most of these studies the 
limitations arise from the determination of the eigen- 

values and eigenfunctions needed for the solution, 
because only a few of the eigenvalues and eigen- 
functions could be computed with the purely numerical 

approaches. As a result the solutions are applicable 
only in the regions away from the inlet and over a very 
limited range of Prandtl numbers. The other limitation 
arises from the.choice of the eddy diffusivity model. 
For example, Hatton [1] studied heat transfer in the 

thermal entrance region with turbulent flow between 
parallel plates; his analysis is applicable only over a 
very limited range of Prandtl and Reynolds numbers 
(i.e. Pr = 1 and 10, Re N 7 x lo3 and 7 x 104). 

Some of these difficulties can be alleviated if a com- 

bination of an analytical and a numerical approach is 
used for the analysis. In this approach, the first few 

eigenvalues and eigenfunctions are computed by purely 
numerical means, and the remaining are determined 
by the method of asymptotic technique. Sellars, Tribus 
and Klein [2] and Dzung [3] studied the case of 
laminar flow inside circular tubes. Sternling and 
Sleicher [4] used only a first order analysis to study 
turbulent flow inside tubes for a uniform wall tempera- 

ture boundary condition; they have the shortcoming 
that their asymptotically determined eigenfunctions did 

not match the computer solutions of Sleicher and 
Tribus [5]. Recently Sleicher et al. [6] and Notter and 
Sleicher [7] used matched asymptotic expansions to 
solve the turbulent Graetz problem. One purpose of 
this paper is to present solutions for heat transfer in 

turbulent flow between parallel plates for use in 
engineering applications. 

ANALYSIS 

Consider heat transfer to an incompressible fluid 
flowing in steady, fully developed, turbulent flow 
between two smooth, straight parallel plates with their 
walls kept at a uniform temperature Tr and the fluid 
enters the channel at a uniform and constant tem- 

perature To. 
The energy equation for a steady state, fully 

developed turbuknt flow inside a parallel plate channel 
is taken in the form 

subject to the boundary conditions 

f3T 

ay ),=o = 

0, 

T(h, x) = TI, 

(1’4 

(14 

T(y, 0) = To. 

Here, x and y are the axial and transverse co- 
ordinates, u and Tare the axial velocity and tempera- 
ture, and CY and aH are the thermal and eddy diffusivities, 

respectively. The assumption ofnegligible axial conduc- 
tion is reasonable when Peclet number exceeds 100. 

These equations are now expressed in the dimension- 
less form as 

with the boundary conditions 

a0 

dq q=a = 

W, 5) = 

Wl, 0) = 

0 < q < 1, 5 > 0, (2a) 

0, (2b) 

0, (2c) 

1, (2d) 

where various dimensionless variables are defined as 

(W 

(3c) 

(_E?L 
cD,PrRe’ 

u+EH 
4)?) = __ 

u ’ 

with 

u = C,(h - y)“” (3f) 

c2k!z 
m ’ 

D, = 4h, (3d 

where u, is the bulk mean velocity and C, is a constant. 
The values of the exponent m and the expression used 
to define the eddy diffusivity &(I]) are given in the 
Appendix. A power law velocity distribution is chosen 

for this study; it will be shown later in this paper that 
the heat-transfer results obtained from the solution of 
the energy equation by using a power law velocity 

profile are in close agreement with those obtained by 
using the usual logarithmic velocity profile. 

Appropriate eigenvalue problem for the solution of 
equations (2) is given as 

subject to the boundary conditions 

H’(0) = 0, (4b) 

H( 1) = 0, (4c) 

with the normalizing condition taken as 

H(0) = 1, W) 

where H, and 1, are the eigenfunctions and eigenvalues 
respectively and the prime denotes differentiation with 
respect to q. 

Then the temperature distribution is taken in the 
form 

O(q, t) = f F,H,(q)e-“:5 
n=O 

(5) 
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and the F, are evaluated by utilizing the boundary 
condition at 5 = 0, which results in the relation, 

f F,H, = 1; 
n=O 

the orthogonality property of the eigenfunctions leads 
to the dete~ination of F, as 

2 

A, A 

ad, 

and for convenience in the subsequent analysis we 
introduce a new constant A, defined as 

A _ _F,H:U) 
R- -. 

2 

The heat flux at the channel wall is given by 

q(l) = k c 
0 ay y=h 

= -z(To-7”‘) i A,e-“ic (8) 
@. n=O 

and the Nusselt number is defined as 

(91 

where Tb is the bulk temperature determined from 

s 

h 

Tu dy 

G=+--. 

f 

(101 

udy 
0 

The substitution of velocity and tem~rature profiles 
from equations (3b) and (5) into equation (10) yields 

(11) 

then the Nusselt number becomes 

Derermination of the eige~val~es and the eigen~nctions where 

Although the first few eigenvalues and eigenf~~ions 
(n s 0 to 3)can be obtained by purely numerical means, 
the numerical solutions become less accurate as the 
value of n increases. On the other hand solutions by 
analytical means are possible only for the large eigen- 
values. Therefore numerical solutions coupled with 
analytical ones are sought for this problem. In this 
analytical approach the flow field is divided into two 
separate regions, the eigenvalue problem is simplified 
for each of these regions consistent with the physical 
situations prevailing in them, the resulting equations 
are then solved analytically and solutions are matched 
to determine the constants. We present here briefly the 
numerical and analytical solution of the eigenvalue 
problem. 

v=Kp=K--s, &= 
1+4m 

4( 14 2m)2 
and p= I-X. (18) 

Solution for the center region 
The solution of equation (16) which satisfies the 

boundary condition R:(O) = 0 is taken as 

RJS) = D cos(s) 09) 

where the unknown coefficient is evaluated from equa- 
tion (13a) in the neighborhood of the center (Q -+ 0 
ors-+O);then 

where 

Computer calculations of.4,” and A,, 
The eigenvalue problem given by equations (4) with 

the velocity and eddy diffusivity profiles as specified 
previously is solved n~rne~~lly by performing the 
calculations in double precision arithmetic and the 
resulting values of 1,’ and A, are presented in Table 1. 

Asymptotic for~las for the higher eigenvalues and 
eigenfunctions 

We seek solution to equations (4) valid for large 
values of 2:“. It is advantageous to change variables in 
equation (4a) so that it takes a form suitable for 
finding solutions; new variables are defined as 

R = [e(n) ’ S11’4WrlX Wf 

K = GA, (13c) 

G = 
5 

: &7MI drlv (134 

WWI = [4v)fl-‘!4$ r~wl”*. (134 

Equation (4a) then takes the form 

$+[Ih(X)]R = 0. 

Equation (14) will now be solved by the matched 
asymptotic expansion technique by separating the flow 
field into two regions, namely, the center and the wall 
regions. For the center region it is suffi~entIy accurate 
to take the velocity and diffusivity as constant; then 
it follows from the definition of w(X) that in the 
center region 

w(X) = w,(X) = 0. (15) 

Then equation (14) for the center region becomes 

d2R, 
ds2+ K’R, = 0, where s = ,KX. (161 

For the wall region the eddy diffusivity and eddy 
viscosity are negligible; the equation becomes 

(17) 

R,(s) = (2/xf”2B~~~(~), 

B = (~/2)l!2(&o)~‘4. 

(2Oa) 

(2Ob) 

HMT Vol. 20, No. S -I 



568 ALI A. SHIBANI and M. N. ~ZISIK 

Table 1. Eigenvalues and constants 

Prandtl 
number 
-__ 

0.0 
0.002 

0.004 

0.01 

0.02 

0.04 

0.1 

0.72 

1.0 

10.0 

102 

103 

lo4 

Reynolds 

-__ 
lo4 
lo4 

5 x IO5 
lo6 
104 
IO5 

5 x lo5 
lo6 
IO4 

5 x lo4 
105 

5 x lo5 
IO6 
104 

5x IO4 
lo5 

5 x 10” 
10h 
lo4 

5 x lo4 
10’ 

5 x lo5 
IO6 
104 

5 x lo4 
IO5 

5 x lo5 
106 
lo4 

5x lo4 
10” 

5 x lo5 
106 
IO4 

5 x lo4 
lo5 

5 x to5 
IO6 
104 

5 x IO4 
IO5 

5 x lo5 
10h 
104 

5x104 
lo5 

5x105 
lo6 
lo4 

5 x lo4 
IO5 
106 
lo4 

5 x lo4 
5 x 105 

2.6393 
2.6410 
2.7681 
3.0887 
2.6486 
2.7185 
3.4218 
4.6243 
2.718 
3.036 
3.479 
1.264 

12.133 
2.9786 
4.2246 
5.6709 

15.6970 
26.9970 

3.737 
7.143 

10.667 
32.389 
53.834 

5.971 
14.897 
23.667 
69.681 

103.026 
18.009 
58.716 
94.189 

330.74 
593.06 

21.114 
72.39 

123.06 
450.62 
770.00 

55.88 
203.56 
364.29 

1464.05 
2707.64 

125.49 
490.50 
892.22 

3707.94 
6938.99 

274.05 
1082.84 
2004.9 

15 782.5 
575.9 

2316.66 
17813.29 

i.: 2: 

25.421 71.500 140.95 
25.440 71.550 141.06 
26.223 73.734 145.29 
29.593 83.725 165.29 
25.520 71.789 141.54 
25.882 72.754 143.38 
33.180 94.346 186.63 
46.794 135.490 269.68 
26.26 74.00 145.98 
29.29 82.82 163.55 
33.89 96.40 190.81 
77.84 230.35 462.72 

145.06 443.08 897.99 
29.041 82.241 162.88 
42.025 120.579 239.65 
58.075 168.923 337.56 

188.339 577.680 1174.71 
369.633 1166.037 2385.52 

37.41 107.46 214.10 
75.17 221.10 444.19 

117.46 351.54 710.75 
428.98 1354.39 2774.31 
838.24 2692.82 5543.48 

64.64 192.70 390.2 1 
173.64 530.16 1081.08 
290.26 899.35 1837.49 

1105.59 3556.27 7332.8 1 
2 120.43 6915.16 14 278.11 

294.86 972.9 1 2002.79 
999.34 3323.12 6949.39 

1753.4 5846.74 12223.14 
6962.7 23 455.99 48 980.29 

13 160.6 44 563.38 93 003.91 
442.63 1500.58 3064.42 

1530.19 5228.63 11 018.46 
2729.94 9362.99 19699.12 

10 967.69 37 847.07 79 501.85 
20531.6 70 793.21 148 713.49 

- 

4 L 42 

0.95037 
0.95 106 
1.04697 
1.18726 
0.95408 
1.01002 
1.31953 
1.84210 
0.9820 
1.1310 
1.3190 
2.9590 
5.1260 
1.08542 
1.61296 
2.22433 
6.62082 

11.70377 
1.3912 
2.8198 
4.3245 

13.9373 
23.6853 

2.3130 
6.1000 
9.8878 

30.5760 
46.0490 

7.4501 
25.212 
40.99 1 

147.51 
266.46 

8.8326 
31.349 
53.877 

201.694 
347.367 

23.7679 
89.193 

161.095 
660.398 

1228.925 
53.552 

215.241 
395.013 

1674.005 
3151.93 

117.068 
482.09 
887.81 

7169.4 
246.101 

1016.98 
8042.80 

0.86528 0.83120 0.81033 
0.86569 0.83146 0.81082 
0.96130 0.92538 0.9058 1 
1.04745 0.99045 0.96306 
0.86754 0.83264 0.81134 
0.92679 0.89173 0.87131 
1.12534 1.04438 1.00544 
1.38937 1.22597 1.16212 
0.8845 0.8434 0.8187 
1.0000 0.9424 0.9100 
1.1229 1.0357 0.990 I 
1.9210 1.5761 1.4600 
2.6300 2.0390 1.9370 
0.94565 0.88087 0.84423 
1.29150 1.14741 1.07434 
1.62706 1.38080 1.27087 
3.32049 2.48026 2.28883 
4.6 1964 4.03403 3.23782 
1.1075 0.9706 0.9044 
1.9133 1.5478 1.3900 
2.6054 2.0068 1.7897 
5.7109 4.0909 3.7368 
8.2768 5.6676 5.4420 
1.4650 1.1350 1.0398 
3.1930 2.2740 1.9563 
4.6373 3.2070 2.7269 

11.2600 7.3928 6.5740 
17.0099 10.9390 9.9557 
2.2046 1.5698 1.8672 
6.3549 3.6577 3.01362 
7.3687 5.7207 4.6314 

31.5617 17.6214 14.6552 
51.8128 29.0679 24.5110 

1.9106 1.5001 1.2389 
5.5137 3.0349 2.653 
8.8664 4.4104 4.0002 

29.25 15.7321 12.659 
52.751 26.774 20.58 1 

Solution for the wall region tions (20a) and (21a) for sufficiently large values of K 
The solution of equation (17) is taken as so that the regions of validity of R, and R, overlap, 

R,(o) = L,“’ [D, J,,(u) + L&J-,Jv)], @la) 
we find 

where 
D2 sin(K - cpr) 
~=_ 
B sin(7cv) 

(224 

m 

V=1+2m’ 

and D1 and Dz are arbitrary constants which are deter- 

mined by matching the two solutions given by equa- 

DI sin(K - (~2) 
-_= 
B sin(7rv) 

(22b) 
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where Table 2. The constant G 

(PI = ;(++v) and cpZ = ;($-v). (22c) 
Rt? 

lo4 5 x to4 lo5 5 x105 lo6 

Asymptotic eigenualues 
The asymptotic eigenvalues are determined by the 

requirement that H(q = 1) = 0. This condition along 
with equation (13a) gives 

R,(u = 0) = 0. (23) 

Equation (23) when applied to equation (21a) requires 
that & = 0. Hence, equations (22a) and (13~) yield 

rm+cpr 
i. = ~ 

G 
Wa) 

and then this result when combined with equation (22b) 
gives 

!+(-1)“. (24b) 

Asymptotic A,, 
To evaluate the asymptotic A., the expressions 

(cYH/&J),=~ and (~?H/dd)~=~, are required. First we 
determine H, (H in the wall region) from R,. Equation 
(21a) after utilizing equation (20b) is written as 

R,(u) = (~cu/~)~‘~E~‘~ 
[ 

$,(u)+$_,(u) . 1 PW 
where 

u = 2”lZ’Q , 2=1-r/. (25b) 

Now, H,(z) is determined from equations (13a) and 
(25) as 

H,(z) = (id)“*~~‘” 
L 

~z1:‘J,,(2vlz1~zv) 

+ ~z1~zJ_,(2vlz”“) 1 (26) 

The derivative 

an 

( > 
- 
aA i=L 

g=l 

is evaluated from equation (26) and the result is 

an ( > 
(- 1)fl~l/2E~/4~(v1)(1/2’-v 

- 
an IzI,= - sin(zv)F(l -v) 

(2W 

$=l 

and (aH/aq),,=, is found as 

= J-1) nn112E;i4(Vqw2)+~ 

F(l +v) . 
G-4 

Finally, the expression for A, is obtained from equa- 
tions (6), (7) and (27) as 

A 
” 

= sin(7rv)(v1J2”F(l- v) 

G&I-(1 +v) G-3) 

Equations (24a) and (28) give the asymptotic ex- 
pressions for 1. and A,, respectively. These relations are 
derived on the assumption that I, is large and hence 

Pr 

0.0 
0.002 
0.004 
0.01 
0.02 
0.04 
0.1 
0.72 
1.0 

10 
100 

1000 
lOcOO 

0.91907 
0.91871 0.91699 0.91145 0.90617 0.84884 
0.91711 0.91484 0.91179 0.79767 0.66228 
0.90268 0.85217 0.78792 0.50361 0.36128 
0.85412 0.70102 0.58923 0.31423 0.21998 
0.74282 0.51176 0.40344 0.20270 0.14287 
0.54979 0.32526 0.24810 0.12305 0.08800 
0.24564 0.12628 0.09381 0.04661 0.03403 
0.20110 0.10061 0.07369 0.03644 0.02685 
0.07277 0.03272 0.02375 0.01199 0.00902 
0.02525 0.01063 0.00782 0.00425 0.00337 
0.00832 0.00362 0.00278 0.00181 0.00159 
0.00278 0.00140 0.00119 0.00103 0.00102 

they represent the larger eigenvalues and eigen- 
functions. 

The parameter G in equations (24a) and (28) is 
constant for a given Reynolds and Prandtl number. 
This constant is defined by equation (13d) and its values 
determined by numerical integration are given in 
Table 2. 

RESULTS AND DISCUSSION 

The Nusselt number and entry length calculations 
can be performed provided that the necessary eigen- 
values, Ai, and the constants, A,, are available. As 
discussed previously the aim of the analysis is to obtain 
lower eigenvalues and the corresponding constants 
from the computer calculations and the higher ones 
from the asymptotic formulas; in this manner a con- 
tinuous range of eigenvalues and constants are de- 
veloped. This procedure, however, is applicable only 
if the assumptions made in the derivation of the 
asymptotic formulas have been realized and there exists 
a domain where the center and wall regions overlap. 
The asymptotic formulas are found to be in good 
agreement with the computer calculations whenever 
such overlapping exists. 

The study also has shown that the extent of agree- 
ment depends strongly on Prandtl number, but weakly 
on Reynolds number. That is, the agreement between 
the computer and the asymptotic solutions has been 
found to be excellent for the range of Prandtl number 
below about 0.1, and rather poor for the higher values 
of Prandtl number. Therefore, in the determination of 
the local Nusselt number and thermal entry lengths for 
Prandtl numbers below 0.1, the asymptotic formulas 
given by equations (24a) and (28) are used to calculate 
numerical values of 3L,’ and A,, for values of n greater 
than those for which computer solutions are available; 
for higher Prandtl numbers only the computer solu- 
tions are used. 

The ‘asymptotic Nusselt number is obtainable from 
equation (12) by taking only the first term in the series, 
that is 

4m 
Nu,=- 

l+m 
aa. 
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Pr= 10000 

IO4 

IO3 

N”ol 

IO2 

IO' 

1000 

100 

IO 

A.72 

0. IO 

0.04 

0.02 

0.01 

0.004 

0 

IO4 IO5 
Re 

IO6 

FIG. 1. Effects of Reynolds number on the asymptotic 
Nusselt number. 

Clearly, the asymptotic Nusselt number is directly 
related to the exponent m and the first eigenvalue, A& 
given respectively in the appendix and Table 1 as a 
function of Reynolds number and both Reynolds and 

Prandtl numbers. Values of the asymptotic Nusselt 
number are shown as a function of Reynolds number 
for a given Prandtl number in Fig. 1. Figure 2 shows 
the asymptotic Nusselt number as a function of Peclet 
number. The asymptotic Nusselt number is correlated 

to within 6% by the relations 

Nu = 12+0.03Re”‘Pr”’ (30a) 

100 

40 

N%o 
i 

with 

0.24 
al = OH---- 

(3.6+Pr) 
(30b) 

and 

a2 = 0.33 f0.5 emo.6pr. (3Oc) 

Equations (30) hold for 0.1 < Pr < IO4 and lo4 < 
Re < 106. 

For the low range of Prandtl number the calculations 
are correlated to within 6% by the relation 

Nu, = 8.3 f0.02Re”.82Prb (314 

with 

0.0096 
h = 0.52+-------. 

0.02 + Pr 
@lb) 

Equations (31) hold for 0.004 < Pr < 1 and lo4 < 
Re < 106. 

In many applications of turbulent flow, the Nusselt 

number for flow between parallel plates is obtained 
from those for a circular tube by merely replacing the 
tube diameter by the effective diameter, D,, for the 

flow. For the case of moderate and large Prandtl 
number, 0.1 < Pr < lo4 and lo4 < Re < 106, a com- 

parison of the asymptotic Nusselt numbers obtained 
from the present solution for parallel plates with those 
obtained for circular tubes by Notter and Sleicher [7] 
based on the effective diameter agreed to within 5%. 

In the case of low Prandtl number especially in the 
liquid metals range, however, the use of the circular 
tube results based on the effective diameter leads to a 

considerable error in the prediction of the asymptotic 
Nusselt number. A comparison of the asymptotic 
Nusselt numbers obtained here for parallel plates in 
the range 0.004 < Pv < 0.1 and lo4 < Re < lo6 with 
those obtained for circular tube by Notter and Sleicher 

[7] based on the effective diameter shows that the 
circular tube results modified for parallel plates over- 
estimates the asymptotic Nusselt number by 13-35”/ 

the range of error being dependent upon the Prandtl 
and Reynolds numbers. The error increases with lower 
Prandtl numbers, and for a given Prandtl number it 
increases with higher Reynolds numbers. Therefore 

k 
Prs0.l 

0.04 

0.01 

I I I 1 
IO3 IO4 

Pe 

FIG. 2. Asymptotic Nusselt number for liquid metal region. 
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2.2 Pr SO.01 

I: 

2.0 ” 

1 

-RRe= IO4 

*\ z:. y(.go4 

!ii _..- 5X105 

in : 

\\\ 1.. 

\ i. 1.. 
1.2 \,\.,l.., 

1, ‘\ 
‘. fi\.+ --.-c.. 

I .._ 
0 2 4 8 8 

X/D, 
IO 12 14- 16 

FIG. 3. Effects of Reynolds number on the Nusselt number. 

equations (31) are recommended for the calculation of 
asymptotic Nusselt number for heat transfer to liquid 
metals in parallel plates. 

The local Nusselt number, Nu(<), is given by equation 
(12) and is plotted as a function of X/D, in Fig. 3. 

The thermal entry length is defined in this study to 
be that distance downstream of the thermal entrance 
necessary for the local Nusselt number, Nu(<), to fall 
to within 1% of its fully developed value, Nu,. Cal- 
culations of this quantity, that is x/De at which 
~~~(~)/~~~ = 1.01, were carried out for 0.002 < Pr < 
1.0 and lo4 < Re < 106. The results are shown in Fig. 4. 

257 

-Pr*O.O04 
_-- 0.002 

20- -.- 0.01 
-..- 0.02 
-...- 0.04 

IS- -_- 0.72 
--- 1.0 

rto, 

IO - 

FIG. 4. 1% Thermal entry lengths. 

In order to determine the effects of the velocity 
profile used in the energy equation on the heat-transfer 
results, the energy equation (2a) is solved by the same 
technique for the logarithmic velocity distribution used 
to calculate the eddy diffusivity. Table 3 shows a com- 
parison of the ~ymptoticNusselt number for the power 
law and log~it~ic velocity profiles. The two results 
are sufficiently close to each other. 
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Table 3. Effects of the choice of velocity distribution on the 
Nusselt number 

2.; J.6 fk = 4G 
Power Logarithmic Logarithmic 

Pr Re Law pdile Power Law profile 

0.01 104 2.718 2.25669 9.206 
5 x 104 3.036 2.6142 10.66 

10s 3.479 3.033 12.32 
5 x 105 7.264 6.5349 26.23 

106 12.133 11.04 44.09 
0.1 104 5.971 5.01 20.42 

5 x 104 14.897 12.9812 52.32 
10” 23.667 20.86 83.84 

5 x lo5 69.681 63.3028 251.69 
lo6 103.026 94.419 374.41 

1.0 104 21.114 18.0768 72.2 
5 x lo4 72.39 63.836 254.2 

lo” 123.06 109.529 435.9 
5 x LOS 450.62 410.i54 1627.6 

100 770.00 706.225 2798.0 

9.0267 
10.4568 
12.132 
26.1398 
44.16 
20.04 
51.925 
83.444 

253.21 
371.61 
72.307 

255.345 
438.118 

1643.016 
2824.9 
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APPENDIX 
The Eddy D@uffusitGty Prqfile ml rhe Values of’m 

The eddy diffusivit), profiles 
The total diffusivity of heat E(V) is given in the dimen- 

sionless form as 

(Al) 

Assuming the shear stress varies linearly with the distance 
from the wall we write 

i&c \ 

iA21 
- 
82 

To determine s/v’, the velocity distribution is taken as 

u+ = & tan-i(O.091 Y”), 0 c Y+ < 45 (A3a) 

u+ = S.l-t2Sln Y”. 
(A3b) 

= - .--.--.- - If@), 

tA3c) 

where 

and the values of u,,,~&~ are tabulated in Table Al, the 
friction factorf, and the velocity defect law h(z) are given as 

h(z) = 5.75 log(l/z), (A4a) 

fm = 1/{210g[Re(f,)“~] -0.8)‘. (A4b) 

The substitution of the above velocity profiles into equation 
(A2) gives the expressions for E/V’. 

The turbulent Prandtl number, Pr,, needed in equation 
(Al) is taken for Pr G I as suggested by Notter and Sieicher 
[7-j, as 

1 

pr;== 
(A5) 

In the case of Prandtl numbers greater than 1, the total 
eddy diffusivity a(@ in the wall region, 0 < Y’ < 45, is 
obtained from equation (Al) by using the retation for en/v 
given by Notter and Sfeicher [7] as 

-%I 0.0009 Y + 3 - = _______ 
1,’ (l+o.O067Y+*)‘~*’ 

o< Y+ <45. (A6) 

For the regions Y + > 45, equations (A2) and (A3) are used 
in such a manner that at Y+ = 45, a& from equation (A6) 
is matched with (P~,.E/v’) from equations (A2) and (A3) to 
obtain the corresponding turbulent Prandtl number. A 
similar approach is followed at 

In the case of the power law velocity profile the values 
of the exponent M are computed from the relation 

tit = 2/[( 1 + SU,,,&,)“~ - 33 (A7) 

and the results are given in Table Al as a function of the 
Reynolds number. 

Table Al. Values of-%-and m 
%X,X 

Reynolds 
number 

104 
5x IO4 

10” 
5 x 10” 

lo6 

U”, 
in 

t&X+X 
______--l- 
0.788 5.890 
0.821 7.198 
0.832 7.748 
0.857 9.310 
0.865 9.930 

METHODE ~~VALWA~ON DU TRANSFERT DE CHALEUR EN ECOULEMENT 
TURBULENT ENTRE PLAQUES PARALLELES 

R&m&Le transfert de chaleur en tcoulement turbuIent entre plaques paraheles est resolu a I’aide dune 
technique de developpement asymptotique avec raccordement dam le cas d’une temperature constante 
a la paroi; les nombres de Nusselt et les longueurs d’etablissement thermique sont determines sur une 
plage Ctendue de nombres de Reynolds et de Prandtl. Une formule analytique simple est donnee pour 
le nombre de Nusselt asymptotique. Une comparaison du nombre de Nusselt asymptotique pour 
l’ecoulement entre plaques paralleles dans le domaine 0,004 < Pr < OJ avec celui en tube circulaire 
obtenu par une solution basee sur le diametre equivalent montre que si les rbultats en tube circulaire 
sont appliques au cas des plaques paralleles on surestime le nombre de Nusselt de 13 a 35 pour cent 

suivant les valeurs des nombres de Prandtl et de Reynolds. 

EINE L&SUNG FOR DEN W~RME~BERGANG BEI TURBULENTER 
STRC)MUNG ZWISCHEN PARALLELEN PLATTEN 

Zusammenfassuag-Der Wbmelbergang bei turbulenter Stromung zwischen parallelen Platten wird fiir 
den Fall einheitlicher Wandtemperatur mit Hilfe einer angepal3ten asymptotischen Entwicklung gel&t; 
die Nusselt-Zahl und die thermische Einlaufstrecke werden fiir einen groBen Bereich von Reynolds- 
und Prandtl-Zahlen bestimmt. Ein einfacher analytischer Ausdruck fi.ir die asymptotische Nusselt-Zahl 
wird angegeben. Ein Vergleich der asymptotischen Nusselt-Zahl fiir parallele Platten im Bereich von 
0,004 < Pr < 0,l mit derjenigen, die sich unter Verwendung des hydraulischen Durchmessers aus der 
Liisung fiir das Rohr ergibt, zeigt, da8 die auf parallele Platten angewandte Rohrltisung Nusselt-Zahlen 

ergibt, welche je nach Prandtl- und Reynolds-Zahlen urn 13 bis 35% zu hoch liegen. 



A solution to heattransferinturbulent flow between parallel plates 

PELUEHME 3AAAYM 0 TEIUIOOSMEHE 
B TYPLYJIEHTHOM nOTOKE MEKaY 
~APAJlJlEJlbHblMM n.JlACTMHAMM 

AnHoTaunu-3anara 0 Te~n006MeHe B Typ6yneHTHOM nOTOKe MeWy napannenbHblMU ZlJEiCTU- 
Haw4 petliaexs bfeToaoh5 acnMnToT~qecKor0 pa3no~eHn5 ana cnygas ~~cTo~HH~~ TeMnepaTypbt 
cTeHKM np~ 3HaSeHHsx swcna HyccenbTa ks nneHbt Tenno5oro HavanbHoro yYacTKa,o~pe~enffeMblx 
B M~~POKOM nuana30He N3iweHefiM wcen PeRHonbnca 3f FlpaHnTns. &m acHMnToTnYecKor0 sfcna 
Hyccenbra npesoaHTcn npocToe aHanHtllYecKoe 5btpaxesne. CpaskieHlte ackih4nToTH9ecKoro YHcna 
HyCCenbTa nfl$~ napannenbsbIx nnacTnH B .nllanasoHe 0,004C; Pv<: 0,l c 'IWIOM Hyccenbra, nony- 
YeHHblM N3 pel.lJeHW-4 LUIR KpyrnOii Tpy6bl C BBeJleHHeM 3KBHBWleHTHOrO UHaMeTpEi, llOKa3blBaeT, 
'IT0 ACnOJlb30BaHUe pe3yJlbTaTOB, IlOJlyVeHHblX LUI5 KpyrJlOfi Tpy6br IlpHMeHHTenbHO K napaJUleJlb- 
HbIM IUlaCTRHaM,IaeT3aBbIlLleHHble 3HaYeHWII’iHCJla HyccenbraHa 13-35’/0 B3aBHCMMOCTIIOT'INCen 

IlpaenTnn A PeiiHonbaca. 
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